Bayesian Estimation of Soil Parameters
from Remote Sensing Data

Ziad s. Haddad and Pascale Dubors

Jet Propulsion Laboratory, Califoruia Institute of Technology
1500 Oak Grove Drive
Pasadena .\ 91109
It (b 18) 351121 8 F:818) 393-5285 Fnail:
zsh@titan.jpl.nasa.gov

ABSTRACT

We consider the problem of finding a mathematically optimal al-
gorithin to estimate soil parametersbased on radar and/or other
m eas ureme nts.Swpecifrcally ggiven measureme uts my, 11y, ., my
representing radar cross-sections of a given resolution element
at different polarizations arid/rrr different frequency bands, and
givenanapproximate model expressing the dependence of these
measuremnents on the dielectric constante and the r.ns, sur-
face height h of the corresponding resolution element, we would
like to make an “optimal” estimate of the actual ¢ and h that
gave rise to the particular iy, 2, observed. By “optimal”
we mean that our algorithin should produce estimates that are,
onaverage, as close as possible to the actual values. To ob-
tain such an algorithm, we assume that we have at our disposal
adata catalogue consisting of careful measurements of the soil
parameters e and h, onone hand, and the corresponding remote
scusing data iy, 14 ete, on the other. We also assume that we
have used this data to write dowu, for each j, an approximate
foriula which computes an average value of m; to associate to
the corresponding values of ¢, h. Rather than throw away the
data catalogue at this stage, and use the average formulasin a
deterniinistic fashion to solve the inverse problem, we propose to
use the data catalogue more fully and quantify the spread of the
measurements about the average formula, then incorporate this
information into the inversion algorithm. ‘I'his paper describes
how we accomplish this using a Bayesian approach.In fact, our
method alows us to

1) make an optimal estimate of € and h

2) place a quantitatively honest error bar on each estimate,
as a function of the actual values of the remote sensing
measurcinents

3) fioc-tune the initalformulas expressing the dependence of
theremote sensing data on the soil parameters
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take into account as many (or as few)remote sensing mea-
surements as we like in making our estitnates of ¢ and h,
in each case producing error bars to quantify the benefits
of using a particular combination of measurements.

MATHEMATICAL APPROACH

Because the laws of scattering fromrandomly rough natural sur-
faces are quite complicated, especially at microwave frequencies,
empirical models have often been used to help express the ob-
se1 ved remote sensing measurements as a function of the surface
parameters. A typical approach, adopted in (Oh et al 1992), is
to start with a “training set” consisting of a catalogue of care-
fully collected data: in the case of Oh et al 1992, this catalogue

consists of 1,-, C- and X-band polarimetric radar backscattering
measurements for various bare soil surfaces, along with laser-
profiler and dielectric-probe measurements of the correspond-
g .o s, surface height and dielectric const ant values. Guided
by the physics that govern elect romaguetic scattering, and us-
ing the data at hand, an approximate modelrelating the radar
backscatter to the surface parameterscanbe established. Oune
way to proceed is to disregard the data catalogue from this
point on: given a particular radar measurement, a determin-
istic inethod can be used to invert the approximate model and
retrieve the corresponding surface parameters. The accuracy of
the retrieved parameters would naturally depend on the inver-
sionmethod used, and would be cliff icultto quantify.

Another approach, that can potentially make fuller use of
the data catalogue, is to model not ouly the approximate de-
pendence of the radar backscatter on the surface parameters,
but also the spread of the actual data about the approximate
model. Indeed, the approximate model can be more or less ac-
curate over certain intervals. Using this information about its
accuracy, and how it dependson the values of the surface pa-

rameters, as evidenced by the carefully collected data, can only
help in the inversion problem. In fact,

1) a Bayesian approach can indeed use this information to
produce an optimal algorithm, i.e. an algorithm which,
among al possible algorithms,and on average, makes the
swnallest error in its estimates of the surface parameters.

2) Moreover, such an approach can quantify the accuracy
of its estimates, depending, naturally, on the values of
the measured radar backscatter in every case.

3) It also turns out that the approach allows one to fine-tune
the initial approximate model to better fit the data.

L=y

Finally, the approach does not restrict one to a r,resl,ec-
ified number of input measurernents: indeed, it can use
any combination of inputs to produce an estimate
of the surface parameters that is based on these inputs.
Moreover, it can quantify the uncertainty of these esti-
mates. This is important because it provides a natural
means of evaluating the usefulness of using one or another
combination of measurements to estimate one or another
surface parameter.

For definiteness, we consider the following specific problem:
Given two measurements m and n,representing respectively the
ratio of HH to VV L-band radar cross-section and the ratio of
HV to VV cross sections, respectively, of a single radar resolution
element, we would like to make an “optimal” estimate of the
correct pair (¢,h) that gave rise to the particular (m,n) observed.
By “optima]”, we mean that the r.m.s s. difference between the




optimal estimates and the actual values of € and k should be
sinallestamong al the errors made by any candidate estimators:
the optimal method is the one which, on gverage,i.e. over many
(all) observations, makesthe smallest error.

Anatural way to proceed is to look for expressions of the
form e = fles k), n=g(& k). Yet it is unlikely that any given
candidate functions f or g can make these equalities exactly
true, ever, because of noise and other uncertainties inherent to
radar data. Infact,modelingthe average dependence of i and
none and h is not sufficient,in itself, to allow one to deteriine
which cand i best correspond to given measurements m, n:
one must still model the dependence of n and n on the many
remaining factors, whose omission from the detertninistic equa-
tions isindecd the reason that these equations arc never exactly
verified. In order to find an optimal procedure, one needs to
make an effort to mathematically account for the discrepancy
between the left- and right- hand- sides of the deterministic re-
lations. We therefore replace these by stochastic equations

m = f(e, ) M,
n = g(e, h)y M, (1)

where (f, g) represent the deterministic “typical” or “average”
way in which (1, n) depend on ¢ and k, and where the M;
are random variables that do not dependone or h and which
represents the remaining randommness in (1, n).

Once we have succeededinestablishing (1), and identify -
ing the joint behavior of the randomn variables (M, M;), there
remains to compute the conditional density function Piea)i(m.n)
for ¢, h given the measured values of m and n. Using Bayes's
theorein, the unnormalized version of this conditional density
satisfies
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where P(en) is the a priori joint density for (e,h), in which one
includes all the a priori information about eand h (such as
estimates based on other instruments - in case one does not
kuow anything a priori about them except their physical range
of values, Pe,n) would just be the uniform density function over
the product of the corresponding intervals).

Using the conditional density given by equation (2), the
optimal unbiased estimator ¢ for ¢ that has minimum variance
(i.e. thatminimizes the r.m.s.error) is the conditional mean

¢ = E{e|(n,n)} = /(P((,M,(M,(c,h)d(dh. (3)

Similarly, the optimal unbiased estimator h for his the condi-
tional mean £{h}(m.n)}.Formula (3) is quite easy to discretize

(in€ and h) and evaluate numerically. ‘1'bus, if we can replace
the deterministic equations by stochastic equations (1) in such
away that we also know the joint density function Par .amn)
of (My,M;), we have a straighforward method of obtaining the
optimal estimate, and of calculating all its moments.

We applied our approach tc, the case where the model and
data to beused are the University of Michigan Radiation lL.abo-
ratory Model (Oh et a 1992), and the corresponding set of radar
cross-sections measured by the LCX polarimetric scatterometer
POLARSCAT (Oh et al 1992). Specifically, we assume that
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where O is theincidence angle of the radar beam, kis the wave

number,and Py :*I'O(c):Hiﬁr is the Fresnel reflectivity of
the surface at normalincidence. We further assume that the
functions f, g model 1 in the sense that m/f(e, h) = M1 =
Ny/Nyandn/g(e, h) = My = N2/ N3, where N,, V2 and N are
independent, I'-distributed random variables. Practically, this
means that

p(M..M;)(Iy y) _ 1 (I/E)aVl(y/V)d-I I'a ’+;}7'§‘77)‘
T (/6T YTy A DT ) ()
(3)
where the parameters a, 3,4,§, v arc to be determined. The
model we used for Af; was basedon a study of the nature of
the randommness present in (m, n). Oue source for this random-
uess is the non-é-function distribution of the background power
level. Another is that the candidate functions f and gmay well
turn out to be poor approximat ions of the true mearns. Indeed,
ever] if one used a very accurate method to estimate the samn-
ple mean, one remains vulnerable to measurement error, and to
contamination of the measurements try unknown scatterers on
the surface ( “debris’, etc). ‘] ‘aking al these considerations into
account, it is neit her unreasonable nor arbitrarily restrictive to
assurne that the measurements m and n are related to ¢ and h
by equation (1), in which each M; is distributed like the ratio
of the two corresponding (independent) 1' distributions. With
the Michigan data (Oh et al 1992), a x*-test for goodness of
fit shows that cr == 5, £= 1.04, u =. 0.82 do fit the data
well, these values having appropriately been determinedusing
the maximum likelihood approach.

RESULTS

Figure 1 is a contour plot of the optimal estimate é ¢, as a func-
tion of the cross section ratios m and n at O = 40°. The values
of ¢ were obtained using our Bayesian approach, and starting

with an a priori density function P(e,h) that is uniform over
the rectangle 2 <e< 20, 0 <kh< 1. QOverlaid on the
contour plot of figure 1 are those samples of the Michigan data
that were collected at 40" incidence, each accompanied by the
value of ¢computed according to the inversion algorithm pro-
posed by Oh et al 1992, as well as the measured values, At
40°, the value of ¢ calculated by the direct inversionalgorithm
falls within 25% of the measured value in four out of the eight
samples, but it misses by 100% in three cases. Figure 2 shows
the estimated variance of our estimates of e. In this case, the
model consisting of tbe function f and g of equation (4) can
be considered ‘useful” if tbe r.m.s. uncertainty of tbe estimates
that we obtain with it is smaller than the a priori uncertainty
made by assuming that ¢ and kh are uniformly distributed, i.e.
if the r.m.s. uncertainty in ¢ is smaller than (20 —2)/v12~ 5.2,
Figure 2 shows that this is indeed achieved everywhere. In fact,
the numerical results show that the r.m.s. relative uncertainty
in the case of ¢ is never worse than 50%. Although sormew hat
high, this value seems encouraging.

One way to reduce theuncertainty in our estimates is to
tune the parameters in the model to the situation at hand.
Specifically, one can postulate a model of the form
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together with a probability density function P(ag;, an) for the
observedratios (i / f, n/g) of the form
PN -
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as before, thengoon to determine a b, ¢ and N in order to
maximize the likelihood of observing theradar cross sections
reported in the Michigan data. At [,-band, we found that the
optimal values fo r a, b and ¢ were a = 0.33675, b - 0.12344,
¢ = O and V= 15, The accuracy of the ¢- and h- estimates
does itnprove, as does the significance of the spread between the
optimal estimates on the dry and wet cases for the other samples,
especially at the steeper incidence angles. Yet the variance be-
tween of the e-estimate remains uncomfortably large compared

with the difference between the wet and dry cases.

We can further reduce the uncertainty in our estimates by
trying to fuse data collected fromndifferent*instruments”, or dif-
ferent bands in the case at hand, namely 1,-, C- and X-bands. 10
make use of the three polarizations from the three bands simulta-
neously, we first replace kh and ¢ by two frequency-indepcndmrt
paramncters, say Aitself and the moisture content u. The expres-
sionforthe conditional density function P for (u,h), conditioned
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Table 1: Soil moisture estimates using HH/VV and HV/VV
ratios at I.,Cand X bands

on these 3 pairs of observations, is derived as above, and the con-
ditionalmeans of P is the optimal estimates for g and h given
the 6 measurements at hand. Table 1 summarizes the results
for 1. The estimated r.m.s. uncertainty almost never reaches
50% of the estimated moisture content anymore. In fact, except
in the roughest case, the wet-dry spread is typically as large
asthe uncertainty in the estimate, whereas in the L-band-only
case it was very much smaller. This is very important because it
implies that the combination of L-, C- and X-bands does allow
rme to estimnate the soil moisture content accurately enough to
consistently discriminate between wet and dry conditions.
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